Life Extension Magazine®
A return-to-basics discussion about the tests that predict risk for heart disease—and what nutritional supplements help correct them Well before coronary heart disease itself gets underway, so-called risk factors for heart disease declare themselves. Atherosclerotic plaque initiates and grows for good reason. Risk factors identify some of those reasons. This is the role of risk factors: To provide an indication that potential for atherosclerosis is present. If you’ve become a bit confused about this conversation over the past few years, you are not alone. Controversy over the importance of risk factors, the overselling of cholesterol drugs, and the emergence of newly identified risk factors for heart disease has made this a rapidly changing, and often difficult to follow, discussion. The understanding of risk factors for heart disease has come a long way since the 1940s, when it was not at all clear just what aspects of diet, lifestyle, or genetics lay behind the disease. Even cigarette smoking was still being advertised as a healthy habit: “Camels: Smoked by more doctors than any other brand!” But, even after nearly 60 years of research and heated debate, there is not uniform agreement on what causes heart disease. We’ve zigzagged around the role of diet, cholesterol, and fats, while newly appreciated phenomena like inflammation, genetic factors, and vitamin D deficiency emerge and even further transform the discussion. We might regard it as 60 years of confusion—or 60 years of wisdom gained. Despite the controversies and persistent uncertainties, surely there are some nuggets of wisdom to be learned.
Risk factors: One at a timeLet’s begin with the four common values present on the standard lipid panel. LDL cholesterolLDL cholesterol has become a frequent fixture in the modern lexicon, a topic as common as money and the weather. It has also proven to be the number one most profitable entity—ever—for the drug industry. While this flood of revenue has driven enormous research (and marketing) efforts, it has also served to muddy the waters of truth, since much research behind LDL cholesterol is drug industry-driven and paid-for. LDL cholesterol is one of the four values provided on any standard cholesterol panel. It is meant to reflect the amount of cholesterol present in the low-density fraction of lipoprotein blood particles (as opposed to those in the high-density fraction, or HDL). It is the basis for most conventional predictions of heart disease risk, since it has been statistically connected to occurrence of heart attack and is recoverable from atherosclerotic plaque when examined. It is often called "bad" cholesterol, since the higher the LDL, the greater the likelihood of cardiovascular events like heart attack, an observation documented repeatedly from the Framingham Study to other populations.2-4 Despite the controversies the drug industry has created by its overenthusiastic marketing of the LDL-reducing statin drugs, reduction of LDL cholesterol, whether with statin drugs, diet, fibers like oat bran or ground flaxseed, or other strategies (see below) has been confidently tied to reduction in heart attack.5 But there are some limitations. While LDL is a predictor of heart disease, it is far from a perfect predictor. High LDL cholesterol doesn’t always mean risk for heart disease; low LDL cholesterol doesn’t necessarily mean low risk for heart disease. Most people are unaware that LDL cholesterol is a calculated value, not measured. It is obtained by subtracting measured HDL and triglycerides from total cholesterol, based on an equation developed in the 1960s by Dr. William Friedewald at the National Institute of Health. Because it is calculated, LDL is frequently inaccurate, not uncommonly under- or over-estimating the true value by 50% or more when compared to more accurate measures (like apoprotein B or LDL particle number obtained through lipoprotein testing).6 Nonetheless, calculated LDL is, at least, a reasonable starting place to gauge risk, meaning, the lower the LDL, the better. Several foods and supplements can be used to reduce LDL cholesterol:
All of these strategies reduce the entire range of LDL cholesterol particles, big and small. However, there are also strategies that reduce the most dangerous small LDL preferentially. That will be a topic for future discussion. Total cholesterolTotal cholesterol is a source of great confusion, but one that seemingly has cast an indelible impression on the minds of most Americans. That’s because the conversation on the dangers of high cholesterol—in both the blood as well as in diet—was the focus of early conversations dating back to the 1950s and 1960s. Back then, you had high cholesterol or you didn’t; the discussion did not include the various sub-fractions of cholesterol like LDL and HDL. It was just total cholesterol. But total cholesterol is (and always has been) a composite value, a combination of undesirable fractions (LDL and triglycerides), as well as desirable (HDL). Does high total cholesterol therefore represent high LDL cholesterol (bad) or high HDL cholesterol (good), or some combination? Does low total cholesterol signify low LDL cholesterol or low HDL cholesterol? Total cholesterol is a flawed value that often clouds the significance of cholesterol issues, rather than clarifying it. There is no doubt that total cholesterol does, in a broad population, correlate with heart attack and other cardiovascular events.9 Total cholesterol >240 mg/dl, for instance, carries a three-fold increased risk of cardiovascular events compared to people with total cholesterol <210 mg/dl.2 However, total cholesterol is a miserably inaccurate value when applied to a specific individual, whose total cholesterol can mean a number of different things. We’ve all known someone with high cholesterol who has never suffered any evidence of heart disease, or someone with low cholesterol who has. Cholesterol is a flawed measure of hidden heart disease in any specific individual at any one point in time. This flawed measure is also the value often cited by critics of the lipid hypothesis—and they’re right. Clouding the issue further is the early concern that cholesterol in foods will increase blood cholesterol—makes sense, doesn’t it? However, this phenomenon has since been shown to exert only modest blood cholesterol-increasing potential.10 Dietary cholesterol, because of inefficient absorption, does not appreciably impact on blood cholesterol. High-density lipoproteins (HDL)Subtract the cholesterol contained in LDL, along with the cholesterol in the very low-density lipoprotein fraction (VLDL, represented by triglycerides) and you’re left with HDL cholesterol. But the cholesterol from HDL is different. Greater levels of HDL are protective because this particle removes cholesterol from vessel walls and carries it to the liver for disposal, a processed called “reverse cholesterol transport,” sort of like traffic flowing in the opposite lane. For this reason, HDL is often called "good" cholesterol. Plenty of studies have demonstrated, beyond any doubt, that the higher the HDL, the less the risk for heart attack and other cardiovascular events. While we need more clinical data on the benefits of increasing HDL (or, perhaps, its reverse cholesterol transport capacity, or some fraction of HDL), studies like the VA-HIT show that cardiovascular events are reduced 11% for every 5 mg/dl increase in HDL (with the drug gemfibrozil, in this study).11 More than high LDL, low HDL values are common in people with heart attacks and heart disease. In fact, even the Framingham Study has determined that, more than LDL, low HDL is a better predictor of future heart attack.12 Unfortunately, due to the dominance of statin cholesterol drugs to reduce LDL, HDL is often neglected in clinical practice. The most important fraction of the HDL family is large HDL, sometimes called “HDL 2b,” the most active in removing cholesterol (“reverse cholesterol transport”). The large fraction is commonly deficient when total HDL is less than or equal to 60 mg/dl. Treatments that increase total HDL tend to shift particles towards the large fraction, as well. Both total and large (HDL2b) HDL can be increased with:
| ||
Triglycerides and Very low-density lipoproteins (VLDL)After LDL cholesterol and HDL cholesterol, very low-density lipoproteins (VLDL) are a third class of blood particles that contain cholesterol. On a standard cholesterol panel, VLDL cholesterol is estimated by measuring triglycerides (since triglycerides ¸ 5 yields VLDL cholesterol levels.) VLDL particles are formed in the liver by combining cholesterol, triglycerides, and the protein, apoprotein B, in addition to other “ingredients.” VLDL production is very sensitive to the availability of triglycerides, and any increase in triglyceride availability also increases VLDL production in the liver. This is a very common situation with excess carbohydrates in the diet, diabetes, metabolic syndrome and insulin resistance. After release from the liver, VLDL particles encounter enzymes that transform them into LDL particles. Increased VLDL can therefore lead to increased LDL. In addition, when triglycerides and VLDL particles are plentiful, they also interact directly with LDL particles, which cause the excess triglycerides to be deposited in LDL particles. This triggers a chain of events that leads to the most undesirable small LDL particles (discussed in Part II). Excess triglycerides and VLDL also interact with HDL particles, which also causes a reduction in HDL, as well as a shift in HDL to the less beneficial smaller varieties of HDL particles.14 Both triglycerides and VLDL can be effectively managed with:
Nutritional strategies can be enormously effective for reduction of triglycerides and VLDL. In past, low-fat diets were used to reduce triglycerides but proved miserable failures that eventually made triglycerides worse. Instead, reduction in carbohydrates, especially refined carbohydrates, can reduce triglycerides and VLDL.15 Low-glycemic index foods like proteins and healthy oils; exercise; weight loss, when appropriate; and adequate sleep can all contribute to reducing triglycerides and VLDL. One unique strategy we have used with enormous success is to eliminate all wheat products (refined and whole grain), along with elimination of any food made with cornstarch, as well as other high-glycemic index foods (e.g., fruit drinks, candies, snacks, etc.). This has yielded drops in triglycerides of hundreds of milligrams. It is important to minimize exposure to fructose, particularly processed foods made with high fructose corn syrup, since this common sweetener boosts triglycerides significantly, as well as possibly increasing risk for diabetes and increasing appetite.16 National guidelines (ATP-III) recommend that triglycerides be kept at 150 mg/dl or lower. However, in our experience in reversal of heart disease, we aim for triglyceride levels of 60 mg/dl or lower. At this triglyceride level, VLDL is also minimized. C-reactive protein (CRP) While inflammation can serve a protective function at the site of an injury, it has another face: a silent process that erodes health and lies at the source of multiple conditions, including diabetes, cancer, and heart disease.17 CRP is a blood protein produced by the liver whenever any inflammatory process is active in the body, whether or not you’re aware of it. Obvious sources of inflammation, like pneumonia and knee arthritis, will raise CRP to high levels. Although its exact function in the body is unknown, the blood concentration of CRP does seem to parallel the degree of inflammation. CRP is therefore a commonly available blood test that can serve as a gauge of inflammation. While very high C-reactive protein levels >10 mg/l nearly always represent inflammation outside of the heart and do not necessarily indicate increased coronary risk, lower levels (<10 mg/l) can be used to gauge low-grade inflammation that stimulates coronary plaque activity. Levels >3 mg/dl increase risk for heart attack three-fold, even when LDL cholesterol is low.17 When elevated CRP occurs in the company of other risks for heart disease (increased LDL, small LDL, etc.), there is as much as a 6 to 7-fold greater risk of heart attack.19 “We have to think of heart disease as an inflammatory disease, just as we think of rheumatoid arthritis as an inflammatory disease.” Paul Ridker, MD Why another blood test? Though cholesterol and the values from the standard lipid panel are helpful, they all too often fail to reliably predict future heart attack. As inflammation that lurks beneath the surface is proving to be a potent cause of heart disease, increased CRP has also proved to improve the predictive power of lipids, perhaps yielding a clearer glimpse into the future. Predictably, drug manufacturers have tried to persuade us that the only effective way to reduce CRP is with statin drugs, which reduce CRP from 20–50%.20 This is simply not true: there are many ways to reduce CRP as well as, or even more effectively, than the statin drugs. Here are approaches to consider that reduce CRP and thereby help remove inflammation as a contributor to your risk for heart disease: Nutritional supplements that reduce inflammation:
Besides statin drugs, other medications that reduce inflammation and CRP include aspirin, which reduces CRP modestly, usually no more than 15%; glitazones (Actos™ and Avandia™) for diabetes or insulin resistance; anti-hypertensive drugs in the ACE inhibitor or angiotensin-receptor blocker categories (lisinopril, enalapril, valsartan, irbesartan, etc.); anti-hypertensive agents in the beta-blocker category (metoprolol, atenolol, etc.).26 One fascinating agent that has shown promise in preliminary studies is the antibiotic, doxycycline. At low doses (too low to treat infections except gingivitis), doxycycline suppresses an important class of inflammatory enzymes called matrix metalloproteinases. It also lowers CRP dramatically. Preliminary studies from England suggest that doxycycline, 20 mg twice per day for 6 months, shuts down the inflammation that drives heart attack and abdominal aneurysm expansion.26
Dr. William Davis is an author and cardiologist practicing in Milwaukee, Wisconsin. He is author of the book, Track your Plaque: The only heart disease prevention program that shows you how to use the new heart scans to detect, track, and control coronary plaque. He can be contacted through www.trackyourplaque.com. | ||||||||||||
References | ||||||||||||
1. Nissen SE, Nicholls SJ, Sipahi I et al for the ASTEROID Investigators. Effect of Very High-Intensity Statin Therapy on Regression of Coronary Atherosclerosis: The ASTEROID Trial. JAMA. 2006;295:1556-65. 2. Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham Study. Ann Intern Med 1979 Jan;90(1):85-91. 3. Kannel WB. Range of serum cholesterol values in the population developing coronary artery disease. Am J Cardiol 1995 Sep 28;76(9):69C-77C. 4. ATP III. Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection. JAMA. 2001;285(19):2486-2497. 5. Selwyn AP. Antiatherosclerotic effects of statins: LDL versus non-LDL effects. Curr Atheroscler Rep 2007 Oct;9(4):281-85. 6. Cromwell WC, Otvos JM. Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep 2004 Sep;6(5):381-87. 7. Maron DJ, Lu GP, Cai NS et al. Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med 2003 Jun 23;163(12):1448-1453. 8. Baba S, Natsume M, Yasuda A et al. Plasma LDL and HDL cholesterol and oxidized LDL concentrations are altered in normo- and hypercholesterolemic humans after intake of different levels of cocoa powder. J Nutr 2007 Jun;137(6):1436-1441. 9. Prospective Studies Collaboration; Lewington S, Whitlock G, Clarke R et al. Blood cholesterol and vascular mortality by age, sex and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007 Dec 1;370(9602):1829-39. 10. Miettinen T, Kesaniemi YA. Cholesterol absorption: reugulation of cholesterol synthesis and elimination and within-population variations of serum cholesterol levels. Am J Clin Nutr 1989:49:629-35. 11. Robins SJ, Collins D, Wittes JT et al. Relation of gemfibrozil treatment and lipid levels with major coronary events. JAMA 2001;285:1585-91. 12. Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial. Am J Cardiol 2000 Dec 21;86(12A):19L-22L. 13. Matthan NR, Giovanni A, Schaefer EJ et al. Impact of simvastatin, niacin, and/or antioxidants on cholesterol metabolism in CAD patients with low HDL. J Lipid Res 2003 Apr;44(4):800-6. 14. Siri P, Krauss RM. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr Atheroscler Rep 2005 Nov;7(6):455-59. 15. Jeppesen J, Chen YD, Zhou MY, Wang T, Reaven GM. Effect of variations in oral fat and carbohydrate load on postprandial lipemia. Am J Clin Nutr 1995 Dec;62(6):1201-5. 16. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 2004 Apr;79(4):537-43. 17. Aggarwal BB, Shishoda S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006 Nov 30;72(11):1605-21. 18. Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol 2006 Apr 18;47(8 Suppl):C19–31. 19. St-Pierre AC, Bergeron J, Pirro M et al. Effect of plasma C-reactive protein levels in modulating the risk of coronary heart disease associated with small, dense, low-density lipoproteins in men (The Quebec Cardiovascular Study). Am J Cardiol 2003 Mar 1;91(5):555–58. 20. Deveraj S, Rogers J, Jialal I. Statins and biomarkers of inflammation. Curr Atheroscler Rep 2007 Jan;9(1):33–41. 21. Timms PM, Mannan N, Hitman GN et al. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? QJM 2002 Dec;95(12):787-96. 22. Kuvin JT, Dave DM, Sliney KA et al. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am J Cardiol 2006 Sep 15;98(6):743–745. 23. Vayalil PK, Mittal A, Katiyar SK. Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis. 2004 Jun;25(6):987–995. 24. Kaszkin M, Beck K, Eberhardt W, Pfeilschifter J. Unravelling green tea’s mechanisms of action: more than meets the eye. Mol Pharmacol 2004;65:15–17. 25. Oak MH, El Bedoui J, Anglard P, Schini-Kerth VB. Red wine polyphenolic compounds strongly inhibit pro-matrix metalloproteinase-2 expression and its activation in response to thrombin via direct inhibition of membrane type 1-matrix metalloproteinase in vascular smooth muscle cells. Circulation. 2004 Sep 28;110(13):1861–1867. 26. Prasad K. C-reactive protein (CRP)-lowering agents. Cardiovasc Drug Rev 2006 Spring;24(1):33–50. 27. Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM. Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arterioscler Thromb Vasc Biol. 2004 Apr;24(4):733–738. 28. Selvin E, Paynter NP, Erlinger TP. The effect of weight loss on C-reactive protein: a systematic review. Arch Intern Med 2007 Jan 8;167(1):31–39. 29. Fredrikson GN, Hedblad B, Nilsson JA, Alm R, Berglund G, Nilsson J. Association between diet, lifestyle, metabolic cardiovascular risk factors, and plasma C-reactive protein levels. Metabolism 2004;53:1436-1142. |