Life Extension Magazine®
Based on the poor quality of what comes out of the municipal tap, health-conscious people often rely on bottled or home-filtered water for their drinking needs. While most filtered and bottled waters are free of cancer-causing contaminants, they provide little or no magnesium. Even most tap water is devoid of this critical mineral. The implications of this widespread magnesium deficiency are frightening, in as much as communities with low magnesium content in drinking water show increased rates of sudden death. Magnesium plays hundreds of crucial roles in the body, including suppressing unstable heart rhythms, controlling blood pressure, maintaining insulin sensitivity, and regulating over 300 enzymes. Attaining optimal magnesium levels is an absolute requirement for good health. In this article, we examine magnesium’s importance to human health, how changes in the way we obtain our drinking water have contributed to widespread magnesium deficiencies, and strategies you can use to optimize your magnesium intake through dietary sources, better bottled waters, and nutritional supplementation. Magnesium: Lost in the FilterOur human ancestors evolved in a world in which healthy drinking water came directly from streams, rivers, and lakes, rich in mineral content. The human body became reliant on obtaining a considerable proportion of its daily mineral needs from natural water sources. Fast-forward to the twenty-first century. We obtain drinking water from a spigot or a plastic bottle. Pesticides and other chemicals seeping into the water supply have made everyone suspicious of water quality. As a result, municipal water-purification facilities have intensified their efforts to remove contaminants like lead, pesticide residues, and nitrates from drinking water. Unfortunately, these modern water-treatment methods also deplete drinking water of desirable minerals like calcium and magnesium. Exacerbating this problem is that many Americans, distrustful of the purity and safety of municipally treated water, have added home water filters and purifiers that efficiently extract any remaining minerals from the water, thus converting “hard” into “soft” water. In fact, the manufacturers of these devices boast of their power to yield water free of “contaminants”—including minerals like magnesium. Thus, the magnesium content of the water that passes through most commercial filters is zero.1 The present-day enthusiasm for bottled water has further compounded the problem. Americans consumed nearly 8 billion gallons of bottled water last year. The mineral content of these products varies widely. While some mineral waters, particularly those from Europe, contain a moderate amount of magnesium, other brands of bottled water contain little or none.2
The upshot of all this is that we cannot rely on drinking water to provide adequate magnesium. The recommended dietary allowance (RDA) for magnesium—that is, the amount required to prevent severe deficiency—is 420 mg a day for men and 320 mg a day for women. In cities with the highest magnesium water content, only 30% of the RDA can be obtained by drinking two liters of tap water a day.4 In most cities, only a meager 10-20% of the daily requirement can be obtained. That leaves 70–90% of the daily magnesium requirement that must be obtained from other sources. Since many people’s diets are also low in magnesium, the average American ingests substantially less magnesium than the RDA.3 The problem may be even worse than it appears. Many authorities believe that higher levels of magnesium are needed to avoid serious illnesses such as heart disease.4 Others argue that “normal” magnesium blood levels reported by laboratories, originally derived from populations symptomatic with magnesium deficiency, are also too low and that higher blood levels are necessary for optimal health.5 Low Magnesium Tied to Risk of Sudden Death“Results from the early epidemiological studies suggest that sudden-death rates in soft-water areas are at least 10% greater than sudden-death rates in hard-water areas. If magnesium supplementation causes even a modest decrease in sudden-death rates, a substantial number of lives might be saved.” 7 —Mark J. Eisenberg, MD, MPH - McGill University Magnesium deficiency may have potentially dire consequences. Critically ill patients, who often have very low magnesium levels, suffer the risk of seizures, life-endangering heart rhythms, and fatal heart attack.8 Magnesium has a stabilizing effect on cell membranes, particularly in heart muscle. A healthy heart generates stable, predictable electrical impulses. Lack of magnesium permits unstable electrical impulses in the heart to emerge, generating abnormal heart rhythms.9,10 In fact, much magnesium research over the years has focused on its administration during heart attack to reduce death from fatal heart rhythms.11 Magnesium blood levels are routinely monitored in hospitalized patients, particularly those who are receiving diuretic medications. It is well known in hospitals that if magnesium blood levels drop too low, abnormal heart rhythms can suddenly develop, necessitating intravenous replenishment of magnesium.9 Dangerous rhythms of the heart’s ventricles, in particular, can occur. People suffering from congestive heart failure are especially susceptible to dangerous heart rhythms when magnesium is low. Scientists have observed that people in areas with higher levels of magnesium in their drinking water exhibit rates of sudden cardiac death that are three to four times lower than those of people living in municipalities with the lowest magnesium levels in drinking water.7,12,13 This has drawn the attention of national and international public health officials. For example, a recent World Health Organization (WHO) report on the quality of drinking water cited 80 studies that have examined the relationship between cardiovascular death and water “hardness” (measured principally by magnesium and calcium content). The WHO concluded that the magnesium content of water is indeed a cardiovascular risk factor and that supplementing drinking water with magnesium should be a priority, much as fluoride became one.14 To date, however, no action has been taken.
The Many Perils of Magnesium DeficiencyThe older you are, the more likely magnesium depletion is to develop,15 with substantial deficiency common by the age of 50. If you have any condition that causes frequent loose stools, magnesium depletion may be severe. This is also true in celiac disease (gluten enteropathy) and in those who have had bowel resection surgery. Some evidence suggests vitamin D deficiency may exacerbate magnesium deficiency.16 Unfortunately, blood magnesium levels are a poor barometer of true body (intracellular) magnesium levels. Only 1% of the body’s magnesium is in the blood; the remaining 99% is stored in various body tissues, particularly bone and muscle.16 If blood magnesium is low, cellular magnesium levels are indeed low—very low. If blood magnesium is normal, cellular or tissue levels of magnesium may still be low. Unfortunately, tissue magnesium levels are not easy to ascertain in living, breathing humans. In one study, only 8% of coronary patients had low blood magnesium, while tissue levels were reduced in 53%.10 In other words, normal blood magnesium levels do not rule out the possibility of a magnesium deficiency. Short of performing a biopsy to measure tissue magnesium levels, potential magnesium deficiency may manifest as:
The absence of any of these telltale signs does not necessarily mean that tissue levels of magnesium are normal. Then how can one know whether magnesium levels are deficient? There is no easy, available method to gauge body magnesium. In all practicality, because of magnesium’s crucial role in health, its widespread deficiency in Americans, and the growing depletion of magnesium in water, supplementing with magnesium may be the best way to ensure adequate total body magnesium levels. | |||||||||
Health Benefits of Magnesium ReplacementWhat can you expect from supplementing magnesium to optimal levels? Research over the past 20 years suggests that magnesium supplementation will accomplish several critically important goals:
Can you correct metabolic syndrome and its complications—such as insulin resistance and high blood pressure—without replacing magnesium? Of course you can, just as you can operate your car without changing the oil. However, magnesium deficiency will catch up with you, and consuming this basic supplement will help you to more easily achieve your health goals. Strategies for Optimizing Your Magnesium IntakeAccording to the US Department of Health and Human Services, nearly all of us fail to achieve even the modest magnesium RDAs of 420 mg for adult males and 320 mg for adult females. Most American adults ingest about 270 mg of magnesium a day, well below the RDA and enough to generate a substantial cumulative deficiency over months and years.37 The magnesium RDA refers to elemental magnesium, defined as the amount of magnesium regardless of its source or form. Magnesium is generally available as various “salts” (not to be confused with table salt), and the amount of elemental magnesium contained in each varies depending on the salt. For example, the amount of magnesium in magnesium oxide is 60%; in magnesium carbonate, 45%; in magnesium citrate, 16%; and in magnesium chloride, 12%.38 Thus, magnesium oxide supplements tend to contain more elemental magnesium per pill than do magnesium citrate supplements. Magnesium salts differ in absorption. Magnesium oxide, though inexpensive and widely available, is thought to be relatively less absorbed than the citrate and chloride forms.39-41 You can also increase your magnesium intake by choosing foods rich in magnesium, which are listed in the table below.42
Dietary Sources of MagnesiumNuts, pumpkin seeds, spinach, and oat bran are particularly rich and healthy sources of magnesium. Another strategy for boosting magnesium intake is to supplement your diet with the soluble fiber known as inulin. Like other soluble fibers, inulin may exert modest cholesterol- and triglyceride-reducing effects. However, it also enhances magnesium absorption in the intestine.43 Inulin can be taken as a supplement, and is contained in some foods (for example, the Stonyfield Farms brand of yogurt). Inulin can help increase satiety (the sense of fullness you get with eating), resulting in decreased calorie intake throughout the day.44 Inulin thus holds promise in supporting efforts to lose weight.45 One more important way to optimize your magnesium intake is to choose water that is rich in magnesium. Unfortunately, in the US, this is easier said than done. The FDA regulates bottled water and mandates that the only additives permitted are fluoride and antimicrobials to deter bacterial growth. Magnesium cannot therefore be added to water labeled spring water or mineral water.
Magnesium-rich mineral waters are not easy to find, but they are out there. By FDA definition, mineral waters must contain at least 250 parts per million (ppm) of total dissolved solids. Not all mineral water contains significant quantities of magnesium. For example, Napa Valley’s Calistoga Springs, labeled as “mineral water,” contains 0.61–0.96 mg/L of magnesium, or virtually none.
To determine the amount of magnesium contained in bottled water labeled “mineral water” but not listed above, go to the bottler’s website to determine the water’s composition. With the exception of Florida’s Original Fountain of Youth Mineral Water, drinking an entire liter of many so-called mineral waters provides only a modest amount of magnesium. Thus, for instance, if you are currently ingesting around 250 mg a day of magnesium from your diet, drinking a liter of Gerolsteiner a day (supplying 108 mg/L of magnesium) will increase your magnesium consumption only to about 350 mg per day. However, by adding a magnesium supplement that provides as little as 100 mg of elemental magnesium, you will have more than achieved the RDA for an adult male. Since many mineral waters are expensive (around $2-3 per liter), magnesium supplements are a far less costly way to optimize your magnesium intake. ConclusionThe intensification of municipal water treatment has resulted in a growing epidemic of magnesium deficiency, with most Americans failing even to achieve the modest levels set by the government-recommended RDA. Most of us have daily deficiencies in magnesium intake of only 70-200 mg a day. The consequences of magnesium deficiency can be dramatic, including poor insulin response, migraine headaches, high blood pressure, and abnormal and even dangerous heart rhythms. Fortunately, there are plenty of healthy choices—foods rich in magnesium, low-cost magnesium supplements, and waters rich in magnesium—that can you help reach or exceed the magnesium RDA and attain the numerous health benefits conferred by optimal magnesium intake. Dr. William Davis is an author and cardiologist practicing in Milwaukee, WI. He is founder of the Track Your Plaque program, a heart disease prevention and reversal program that shows how CT heart scans can be used to track and control coronary plaque. He can be reached at www.TrackYourPlaque.com.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Available at: http://www.historyofwaterfilters.com/. Accessed November 14, 2006. 2. Azoulay A, Garzon P, Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med. 2001 Mar;16(3):168-75. 3. Available at: http://lpi.oregonstate.edu/infocenter/minerals/magnesium/index.html. Accessed November 14, 2006. 4. Touyz RM. Magnesium in clinical medicine. Front Biosci. 2004 May 1;9:1278-93. 5. Liebscher DH, Liebscher DE. About the misdiagnosis of magnesium deficiency. J Am Coll Nutr. 2004 Dec;23(6):730S-1S. 6. Durlach J, Bac P, Durlach V, et al. Magnesium status and ageing: an update. Magnes Res. 1998 Mar;11(1):25-42. 7. Eisenberg MJ. Magnesium deficiency and sudden death. Am Heart J. 1992 Aug;124(2):544-9. 8. Dacey MJ. Hypomagnesemic disorders. Crit Care Clin. 2001 Jan;17(1):155-73, viii. 9. Eisenberg MJ. Magnesium deficiency and cardiac arrhythmias. NY State J Med. 1986 Mar;86(3):133-6. 10. Purvis JR, Movahed A. Magnesium disorders and cardiovascular diseases. Clin Cardiol. 1992 Aug;15(8):556-68. 11. Smetana R, Stuhlinger HG, Kiss K, Glogar DH. Intravenous magnesium sulphate in acute myocardial infarction—is the answer “MAGIC”? Magnes Res. 2003 Mar;16(1):65-9. 12. Kousa A, Havulinna AS, Moltchanova E, et al. Calcium:magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environ Health Perspect. 2006 May;114(5):730-4. 13. Anderson TW, Le Riche WH, MacKay JS. Sudden death and ischemic heart disease. Correlation with hardness of local water supply. N Engl J Med. 1969 Apr 10;280(15):805-7. 14. Available at:http://www.nsf.org/international/press_release.asp?p_id=12041. Accessed November 14, 2006. 15. Laires MJ, Monteiro CP, Bicho M. Role of cellular magnesium in health and human disease. Front Biosci. 2004 Jan 1;9:262-76. 16. Berkelhammer C, Bear RA. A clinical approach to common electrolyte problems: 4. Hypomagnesemia. Can Med Assoc J. 1985 Feb 15;132(4):360-8. 17. Roffe C, Sills S, Crome P, Jones P. Randomised, cross-over, placebo controlled trial of magnesium citrate in the treatment of chronic persistent leg cramps. Med Sci Monit. 2002 May;8(5):CR326-30. 18. Bilbey DL, Prabhakaran VM. Muscle cramps and magnesium deficiency: case reports. Can Fam Physician. 1996 Jul;42:1348-51. 19. Bussone G. Pathophysiology of migraine. Neurol Sci. 2004 Oct;25 Suppl 3S239-41. 20. He K, Liu K, Daviglus ML, et al. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation. 2006 Apr 4;113(13):1675-82. 21. Guerrero-Romero F, Tamez-Perez HE, Gonzalez-Gonzalez G et al. Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab. 2004 Jun;30(3):253-8. 22. Rodriguez-Moran M and Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003 Apr;26(4):1147-52. 23. Yokota K, Kato M, Lister F, et al. Clinical efficacy of magnesium supplementation in patients with type 2 diabetes. J Am Coll Nutr. 2004 Oct;23(5):506S-9S. 24. Rasmussen HS, Aurup P, Goldstein K, et al. Influence of magnesium substitution therapy on blood lipid composition in patients with ischemic heart disease. A double-blind, placebo controlled study. Arch Intern Med. 1989 May;149(5):1050-3. 25. Piotrowski AA, Kalus JS. Magnesium for the treatment and prevention of atrial tachyarrhythmias. Pharmacotherapy. 2004 Jul;24(7):879-95. 26. Sontia B, Touyz RM. Role of magnesium in hypertension. Arch Biochem Biophys. 2006 May 24. 27. Jee SH, Miller ER, III, Guallar E, et al. The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. Am J Hypertens. 2002 Aug;15(8):691-6. 28. Gallai V, Sarchielli P, Morucci P, Abbritti G. Magnesium content of mononuclear blood cells in migraine patients. Headache. 1994 Mar;34(3):160-5. 29. Mauskop A, Altura BT, Cracco RQ, Altura BM. Intravenous magnesium sulfate rapidly alleviates headaches of various types. Headache. 1996 Mar;36(3):154-60. 30. Wang F, Van Den Eeden SK, Ackerson LM, et al. Oral magnesium oxide prophylaxis of frequent migrainous headache in children: a randomized, double-blind, placebo-controlled trial. Headache. 2003 Jun;43(6):601-10. 31. Lukaski HC. Magnesium, zinc, and chromium nutrition and athletic performance. Can J Appl Physiol. 2001;26 SupplS13-S22. 32. Cinar V, Nizamlioglu M, Mogulkoc R. The effect of magnesium supplementation on lactate levels of sportsmen and sedanter. Acta Physiol Hung. 2006 Jun;93(2-3):137-44. 33. Sarac AJ, Gur A. Complementary and alternative medical therapies in fibromyalgia. Curr Pharm Des. 2006;12(1):47-57. 34. Blitz M, Blitz S, Hughes R, et al. Aerosolized magnesium sulfate for acute asthma: a systematic review. Chest. 2005 Jul;128(1):337-44. 35. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004 Dec;15(12):710-6. 36. Rapkin A. A review of treatment of premenstrual syndrome and premenstrual dysphoric disorder. Psychoneuroendocrinology. 2003 Aug;28 Suppl 3:39-53. 37. Ervin RB, Wang CY, Wright JD, Kennedy-Stephenson J. Dietary intake of selected minerals for the United States population: 1999-2000. Adv Data. 2004 Apr 27;(341):1-5. 38. Available at: http://ods.od.nih.gov/factsheets/magnesium.asp#h6. Accessed November 15, 2006. 39. Firoz M, Graber M. Bioavailability of US commercial magnesium preparations. Magnes Res. 2001 Dec;14(4):257-62. 40. Coudray C, Rambeau M, Feillet-Coudray C, et al. Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes Res. 2005 Dec;18(4):215-23. 41. Walker AF, Marakis G, Christie S, Byng M. Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res. 2003 Sep;16(3):183-91. 42. Available at: http://www.nal.usda.gov/fnic/foodcomp/Data/SR14/wtrank/sr14w304.pdf. Accessed November 15, 2006. 43. Roberfroid MB. Introducing inulin-type fructans. Br J Nutr. 2005 Apr; 93 Suppl 1S13-S25. 44. Archer BJ, Johnson SK, Devereux HM, Baxter AL. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br J Nutr. 2004 Apr;91(4):591-9. 45. Hoeger WW, Harris C, Long EM, Hopkins DR. Four-week supplementation with a natural dietary compound produces favorable changes in body composition. Adv Ther. 1998 Sep-Oct;15(5):305-14. 46. Available at: http://www.pdrhealth.com/drug_info/nmdrugprofiles/nutsupdrugs/mag_0167.shtml. Accessed November 16, 2006. |